

Modification of Ca^{2+} -Activated K^+ Channels in Cultured Medullary Thick Ascending Limb Cells by N-Bromoacetamide

M. Cornejo, S.E. Guggino, and W.B. Guggino

Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, and Laboratory of Biological Chemistry, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224

Summary. Ca^{2+} -activated K^+ channels were studied in cultured medullary thick ascending limb (MTAL) cells using the patch-clamp technique in the inside-out configuration. The Ca^{2+} activation site was modified using N-bromoacetamide (NBA). 1 mM NBA in the bath solution, at 2.5 μM Ca^{2+} reduces the open probability, P_o , of the channel to <0.01, without an effect on single-channel conductance. NBA-modified channels are still Ca^{2+} -sensitive, requiring 25 mM Ca^{2+} to raise P_o to 0.2. Both before and after NBA modification channel openings display at least two distributions, indicative of more than one open state. High Ca^{2+} (1 mM) protects the channels from modification. Also presented is a second class of Ca^{2+} -activated K^+ channels which are normally present in MTAL cells which open infrequently at 10 μM Ca^{2+} ($P_o = 0.01$) but have a P_o of 0.08 at 1 mM Ca^{2+} . We can conclude (i) that NBA modifies the channel by shifting Ca^{2+} -sensitivity to very high Ca^{2+} , (ii) that NBA acts on a site involved in Ca^{2+} gating, and (iii) that a low affinity channel is present in the apical cell membrane with characteristics similar to those of normal channels modified with NBA.

Key Words loop of Henle · potassium conductance · ion channels

Introduction

Large conductance Ca^{2+} -activated K^+ channels are present in cells from several nephron segments of the kidney, including the apical cell membrane of the *Amphiuma* diluting segment (Kawahara, Hunter & Giebisch, 1987), the thick ascending limb (Guggino et al., 1987a) and the cortical collecting duct (Hunter et al., 1984). Although the exact function of these channels in epithelial cells is not fully understood, it is clear that the presence of these K^+ channels gives these cells a pathway for large movements of K^+ from cell to tubule lumen down a favorable electrochemical potential.

For example, it was shown in a primary culture

of chick kidney cells that Ca^{2+} -activated K^+ channels recorded in cell-attached patches open very infrequently at the resting membrane potential, but could be stimulated dramatically by application of ADH or forskolin (Guggino et al., 1985). In the stimulated condition, the channels spent a large amount of time in the open state, contributing to K^+ movement across the membrane. Thus, it is possible that Ca^{2+} -activated K^+ channels play a key role in K^+ movements in cells that are stimulated either through receptor activation or possibly by changes in cell volume.

Because of the importance of Ca^{2+} in modulating Ca^{2+} -activated K^+ channel activity and because of the impact that this modulation may have on the K^+ conductance of cells possessing these channels, we addressed our studies to the Ca^{2+} modulation of Ca^{2+} -activated K^+ channels in cultured medullary thick ascending limb (MTAL) cells and to the influence of N-bromoacetamide (NBA) on this modulation. NBA is an agent that modifies proteins at the carboxyl end of cysteine, histidine, phenylalanine, tyrosine, and tryptophan residues. It is known to remove inactivation of Na^+ channels in excitable tissues (Oxford, Wu & Narahashi, 1978; Patlak & Horn, 1982). We chose NBA because it was shown by Pallotta (1985) to remove the Ca^{2+} sensitivity of Ca^{2+} -activated K^+ channels in rat skeletal muscle. We have extended his observations by demonstrating that NBA also modifies Ca^{2+} -activated K^+ channels in MTAL cells. In these cells NBA shifts channel activation to much higher Ca^{2+} concentrations instead of removing completely the Ca^{2+} sensitivity as was postulated for the rat muscle channels (Pallotta, 1985). In addition, we have shown that high Ca^{2+} can protect the channel from NBA modification.

Materials and Methods

CELL CULTURE

The clone, A₃, of rabbit MTAL cells used in this study were established by Green et al. (1985). The cells were grown in culture according to the techniques described in a previous paper (Guggino et al., 1987a). Cultures were used 2 to 7 days after seeding. Cells grown in small groups or near confluence were used for patch-clamp experiments. Excised patch experiments were performed at 22°C.

PATCH-CLAMP TECHNIQUES

Pipettes made from flint glass were produced as described in detail by Hamill et al. (1981). Pipettes were pulled in two steps with a Kopf (Tujunga, CA) vertical pipette puller, fire polished on a microforge assembled from a Leitz microscope (Bunton Instruments, MD), and coated with Sylgard (Dow Corning, MI). Pipettes routinely had an open-tip resistance of 5–8 MΩ. Membrane currents were recorded with an extracellular patch clamp (Yale Physiology Department, Mark V, New Haven, CT). Electrical contact between pipette and electrometer was made with a Ag/AgCl wire. A similar wire in the bath was connected to ground. The signal from the patch-clamp amplifier was digitized by a pulse code modulator (Model VP101, JVC, Tokyo, Japan) and recorded on a video tape recorder (Model BR6400U, JVC, Tokyo, Japan). Before being digitized the signal was filtered at 3 kHz with a low pass 8-pole Bessel filter (Frequency Devices, Haverhill, MA).

Seals were made by gently lowering the patch pipette onto the surface of a cell with a Leitz micromanipulator, until a small increase in patch resistance was observed, then gigaseals between 5–10 GΩ were obtained with gentle mouth suction. The patch was excised by quickly pulling the pipette away from the cell. In addition to Ca²⁺ activation and voltage dependence of the channel, inside-out patches were determined by a decrease in amplitude with 20 mM TEA (tetraethylammonium) but not 1 mM TEA. Maxi-Ca²⁺-activated K⁺ channels described in this study showed similar sensitivity to TEA as reported previously (Guggino et al., 1987b).

SOLUTIONS

In all experiments, the pipette was filled with (in mM): 135 NaCl, 5 KCl, 1 MgCl₂, 1 CaCl₂, and 15 HEPES adjusted to pH 7.4 with NaOH. The bath solution contained (in mM): 135 KCl, 5 NaCl, and 15 mM HEPES adjusted to pH 7.4 with KOH. 10 mM EGTA was added when 1–10 μM free Ca²⁺ was required. The free Ca²⁺ was adjusted with CaCl₂ using a Ca²⁺ macroelectrode (F2210Ca, Radiometer, Copenhagen, Denmark). The solutions were perfused in a 1-ml chamber at 17 ml/min, with the patch pipette placed near to solution inflow. The solution near the patch was exchanged in 5 sec, as assessed by a dramatic decrease in channel opening when Ca²⁺ concentration is lowered from 10 to 1 μM. NBA was applied to the intracellular face of excised-inside-out patches for short periods of time (see Table 2) and removed. Thus all data analysis was performed in the absence of NBA.

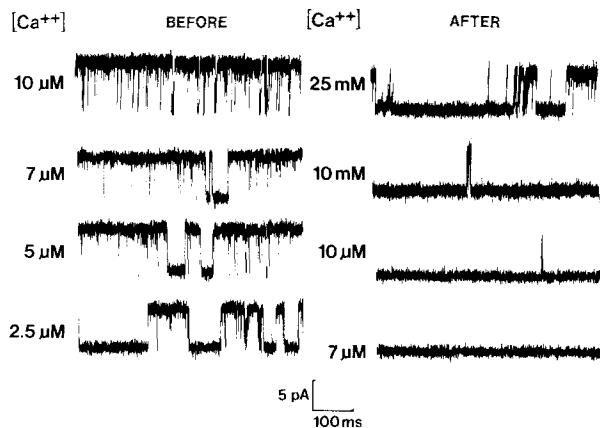
DATA ANALYSIS

After the experiment, data digitized at 7.1 kHz were transferred to a computer (Micro-PDP/11, Digital Equipment Corp., Maynard, MA) for analysis. The following two parameters were assessed: (i) Open probability, expressed as the ratio of open time to total time, and (ii) mean open (T_o) times. The latter parameter was determined by plotting frequency histograms of open time versus time. Individual values from the histograms were fitted by the computer using the SAAM program (Berman, Shahn & Weiss, 1962; Berman & Weiss, 1978) running on a VAX 8500 computer (Digital Equipment Corp, Maynard, MA) to the equation

$$Cd = Ae^{-t/T_1} + Be^{-t/T_2} \quad (1)$$

where Cd is the cumulative distribution of open events longer than a given time,¹ t .

Outward current from inside-out, excised patches is designated as upward deflections or positive current. All voltages are applied voltages, designated as the voltage applied at the intracellular face of cell membrane with respect to ground in the pipette. Single-channel conductance was measured from the slope of current *vs.* voltage curves. Typically, between 5 and 7 voltages were used between –40 and +30 mV.


Data are reported as mean ± SE (n = number of observations).

Results

EFFECT OF N-BROMOACETAMIDE

Figure 1 shows a series of tracings from a single channel before and after perfusion of 1 mM NBA on the intracellular face of the membrane. In the left tracings, the channel before NBA modification is distinctly Ca²⁺ sensitive with the opening probability, P_o , increasing from 0.39 at 2.5 μM Ca²⁺ to 0.92 at 10 μM Ca²⁺. The presence of only one discrete amplitude of channel fluctuations in 10 μM Ca²⁺ (upper left panel of Fig. 1), a concentration which causes normal channels to spend most of the time in the open state, confirms that there is only one channel in the patch. If more than one channel were present, multiple amplitudes would be evident at high Ca²⁺.

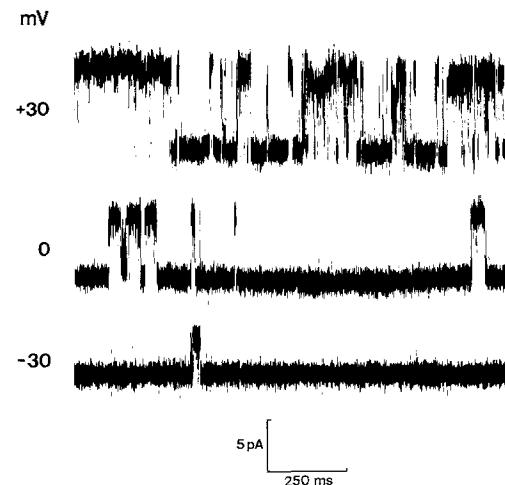

¹ The distributions of open time were fit to two exponentials. However, as shown by others (Magleby & Pallotta, 1983), there is a third component with a very short mean open time. For example, in the NBA-modified channel at 25 mM Ca²⁺ (see Table 3), a fit of the opening distributions to three exponentials yields mean open times of 0.49, 5.3, and 27.6 msec, respectively. The latter two are similar to the ones reported in Table 3. We chose not to fit all our data to three exponentials, because in most instances it was not possible for us to resolve accurately the mean open time of events significantly shorter than 0.5 msec.

Fig. 1. Ca²⁺ activation of a channel before and after NBA treatment. Recordings are from a single channel at 0 mV before (left panel) and after (right panel) modification with 1 mM NBA at 2.5 μ M Ca²⁺. The open probability before treatment: at 10 μ M Ca²⁺, $P_o = 0.92$; at 7 μ M Ca²⁺, $P_o = 0.85$; at 5 μ M Ca²⁺, $P_o = 0.81$; at 2.5 μ M Ca²⁺, $P_o = 0.39$; following modification at 25 mM Ca²⁺, $P_o = 0.19$; at 10 mM Ca²⁺, $P_o = 0.02$; at 10 μ M Ca²⁺, $P_o = 0.01$; and at 7 μ M Ca²⁺, $P_o = 0.00$. Evidence that only one channel is present in this patch comes from 10 min of recording time without any evidence of a second level. Control data are from normal activity channels

NBA modification of the same channel in the presence of 2.5 μ M Ca²⁺ (right panel, Fig. 1) dramatically lowers channel activity such that P_o is 0.000 and 0.009 at a 7 and 10 μ M Ca²⁺, respectively, compared to 0.85 and 0.92 before modification. Importantly, however, the opening probability can be increased (upper two tracings, right panel, Fig. 1) to 0.02 and 0.19 if Ca²⁺ concentrations are increased to 10 and 25 mM Ca²⁺, respectively, showing that the channels are still Ca²⁺ sensitive following NBA modification. It is important to stress that, although the modified channel is Ca²⁺-sensitive, P_o of the modified channel at 25 mM is only 21% of that observed at 10 μ M Ca²⁺ prior to NBA application. Table 1 summarizes the open probability, P_o , versus Ca²⁺ concentration in four experiments. Although there is considerable variation in the ability to activate channels with Ca²⁺ following NBA modification, P_o always increases with increasing Ca²⁺. Our results confirm the observations of Pallotta (1985) that NBA modifies Ca²⁺-activated K⁺ channels by dramatically decreasing the opening probability at low Ca²⁺. However, in contrast to Pallotta, who concluded that NBA removed the Ca²⁺ sensitivity of the channels, we show that NBA modification does not remove Ca²⁺ activation but instead shifts it to much higher Ca²⁺ concentrations.

Figure 2 presents three recordings from a single NBA-modified channel exposed to 25 mM Ca²⁺ at

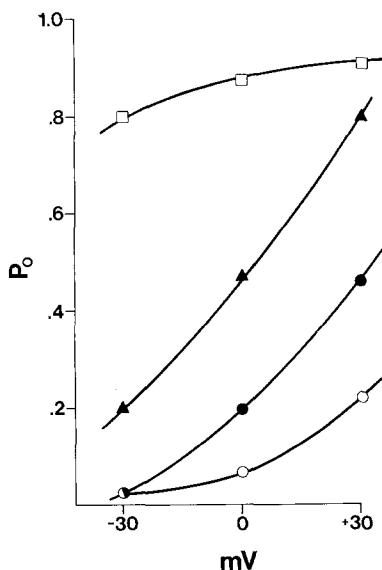

Fig. 2. Voltage activation of a single channel following NBA modification. The open probability at +30 mV, $P_o = 0.43$; at 0 mV, $P_o = 0.14$; and at -30 mV, $P_o = 0.02$. The single-channel conductance estimated from the slope of current vs. voltage relationship for this channel in high Ca²⁺ is 81 pS, less than that observed at low Ca²⁺ (149 \pm 9 pS, $n = 3$). We also have observed similar reductions in amplitude in unmodified channels in high Ca²⁺ (single-channel conductance = 79 pS), which may be caused by a fast blocking effect of Ca²⁺ at high concentrations (see the discussion for details)

Table 1. Open probability of channels treated with NBA

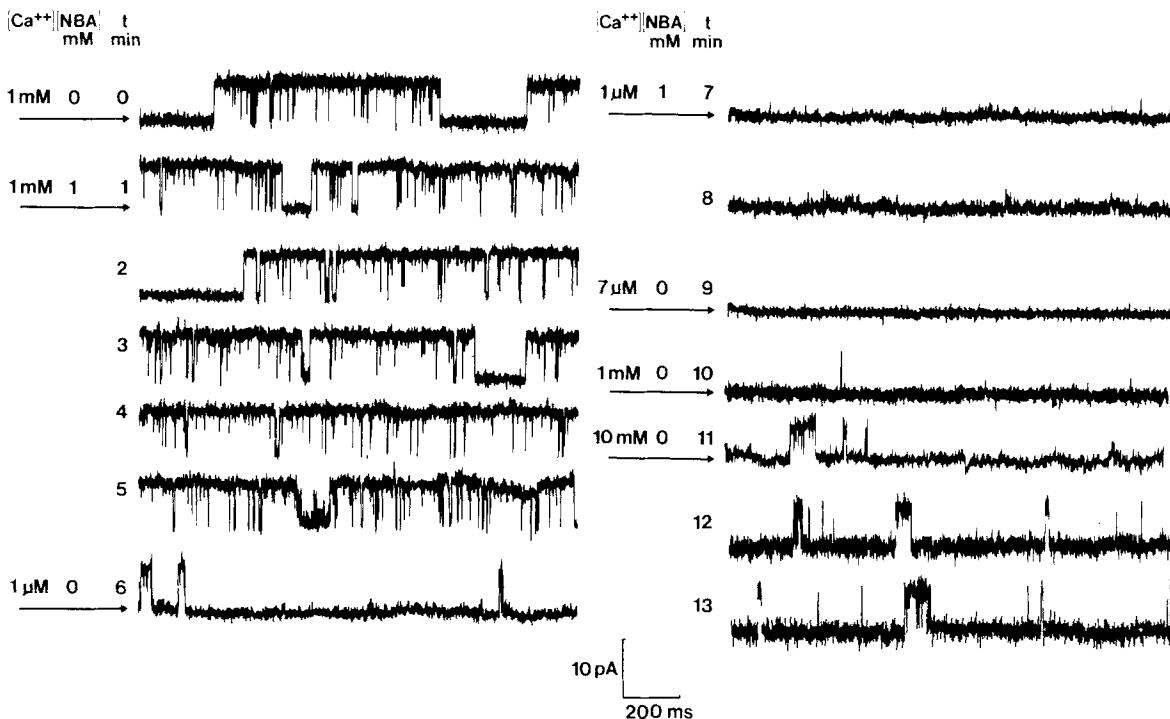
Number	Ca ²⁺ concentration	P_o
1	7 μ M	0.001
	1 mM	0.004
	10 mM	0.001
	25 mM	0.007
2	5 μ M	0
	1 mM	0.06
	10 mM	0.3
3	10 μ M	0.001
	5 mM	0.004
	7.5 mM	0.004
	10 mM	0.01
4	25 mM	0.2
	1 mM	0.01
	5 mM	0.4
	10 mM	0.5
	12.5 mM	0.8
	15 mM	0.8

Recording time for the determination of open probability varied between 18 and 88 sec. All results are from single-channel patches.

three different voltages. Importantly, the open probability increases as the applied voltage becomes more positive, indicating that the modified channel is voltage sensitive. Similar observations

Fig. 3. Open probability *vs.* voltage for normal unmodified and modified channels. Squares represents an unmodified channel in 7 μM Ca^{2+} , triangles, an unmodified channel at 2.5 μM Ca^{2+} , filled circles, a modified channel at 25 mM Ca^{2+} , and open circles, a low activity channel in 1 mM Ca^{2+}

also were made by Pallotta (1985). Plotted in Fig. 3 is the influence of voltage on open probability for the same channel before and after NBA modification. The unmodified channel in 2.5 μM Ca^{2+} shows an open probability that increases at positive voltages, however, at high Ca^{2+} concentrations (10 μM) open probability becomes less sensitive to voltage within the range of voltages described in Fig. 3, a characteristic previously reported for Ca^{2+} -activated K^+ channels in MTAL cells (Guggino et al., 1987b). This latter observation is consistent with those of Moczydlowski and Latorre (1983), who showed that Ca^{2+} modulates the voltage activation of the channel. Importantly, P_o of the modified channel also increases with depolarization at 25 mM an effect similar to the untreated channel in 2.5 μM Ca^{2+} . This suggests that the mechanism of voltage activation is unaffected by NBA modification. Our data support the model of Moczydlowski and Latorre (1983) which states that Ca^{2+} binding is the major modulator of channel gating with voltage affecting Ca^{2+} binding.


Finally, similar to the observations of Pallotta (1985), NBA modification does not affect single-channel conductance. The average single-channel conductance of unmodified channels is 141 ± 5 pS ($n = 3$) and for modified channels is 149 ± 9 pS ($n = 3$) measured in the presence of 7–10 μM Ca^{2+} . This suggests that NBA affects the gating mechanism without influencing the conduction pathway.

NBA TREATMENT IN HIGH Ca^{2+}

To determine if there is any interaction between the Ca^{2+} binding site and the site of action of NBA, single Ca^{2+} -activated K^+ channels were exposed to NBA in the presence of high Ca^{2+} . An example of such an experiment is given in Fig. 4, which shows tracings from a continuous recording from a single channel. At time 0, the channel is exposed to 10⁻³ M Ca^{2+} for 1 min as a control. Note that in the absence of NBA the channel displays kinetics which are typical of high Ca^{2+} , namely, bursts of flickery openings punctuated by long quiet periods. The channel is then exposed to NBA in 1 mM Ca^{2+} for 5 min. At 1 mM Ca^{2+} , NBA treatment does not have any effect on the open probability in sharp contrast to its effect at 2.5 μM Ca^{2+} (*compare* to Fig. 1). Following 5 min exposure, NBA was removed from the solution for 1 min and reintroduced at 10⁻⁶ M Ca^{2+} . NBA exposure at low Ca^{2+} dramatically reduces the amount of time that the channel spends in the open state. In fact, in this experiment NBA removes all channel opening events at 1 and 7 μM Ca^{2+} . Similar to the channel shown in Fig. 1, the NBA-modified channel of Fig. 4 could be activated in high Ca^{2+} ; however, the open probability in 1 mM Ca^{2+} (0.01) following exposure is much less than before (0.74), more evidence that the channel has been modified by NBA. Thus, it appears that high Ca^{2+} concentration on the intracellular face of the membrane protects the channel from the effects of NBA.

The data from 11 patches are given in Table 2. Although there is some degree of variation among channels, all were modified by NBA in low Ca^{2+} (assessed by a sudden reduction in open probability). In contrast, when a patch was treated with 1 mM NBA at high Ca^{2+} concentrations, modification was not accomplished for periods as long as 5 min. The average time to modification in 2.5 μM Ca^{2+} was 52 ± 6 sec ($n = 7$), whereas in 1 mM Ca^{2+} average treatment times without modification were 206 ± 23 sec ($n = 6$). To make sure that the lack of modification is due to the high Ca^{2+} , two patches containing single channels were exposed sequentially to NBA at high then low Ca^{2+} with modification of both.

It is important to ask whether NBA is capable of working in high Ca^{2+} . Although we have not addressed this question directly, Oxford et al. (1978), have shown that NBA treatment of Na^+ channels in squid axon removes Na^+ channel inactivation when applied to the inside of the axon, but reduces single channel conductance without an effect on inactivation when applied to the outside. The observation that NBA does have an effect when applied to the

Fig. 4. A continuous recording of a single channel. Each tracing is the last 1.5 sec of the minute specified in the legend. The open probability for each minute is as follows: 0, $P_o = 0.74$; 1, $P_o = 0.80$; 2, $P_o = 0.68$; 3, $P_o = 0.76$; 4, $P_o = 0.90$; 5, $P_o = 0.72$; 6, $P_o = 0.05$; 7, $P_o = 0.00$; 8, $P_o = 0.00$; 9, $P_o = 0.00$; 10, $P_o = 0.01$; 11, $P_o = 0.07$; 12, $P_o = 0.08$; 13, $P_o = 0.07$. Normal activity channels were used in this experiment

seawater face of the membrane (50 mM Ca²⁺) is evidence that NBA can indeed operate in high Ca²⁺.

OPEN CHANNEL KINETICS

Ca²⁺-activated K⁺ channels usually display complicated opening and closing kinetics indicative of several different open and closed states (see Barrett, Magleby & Pallotta, 1982; Magleby & Pallotta, 1983; Moczydlowski & Latorre, 1983). We have fit the distribution open events to two exponential components, with mean open times given in Tables 3 and 4. Note that both NBA modified (Table 3) and untreated channels (Table 4) display short and long duration open events. Normal channels exposed to 1 mM Ca²⁺ concentrations (Table 4) have a majority of events of longer duration, whereas following NBA modification (Table 3), the mean open time for each class of events shorten considerably. Since, both untreated and modified channels in high Ca²⁺ exhibit short and long duration opening events, the NBA modification does not selectively remove a particular population of events.

It is known that the duration of the individual opening events of Ca²⁺-activated K⁺ channels increase with increasing Ca²⁺ concentration (Moc-

Table 2. Modification of channels with NBA

1 mM NBA–high Ca ²⁺ Exposure time (sec)	1 mM NBA–low Ca ²⁺ Modification time (sec)
300 –	60 +
175 –	62 +
178 –	50 +
135 –	40 +
223 –	78 +
225 –	35 +
206 ± 57	41 +
	52 ± 23

Exposure time is the period of time that the channel was exposed to NBA. In high Ca²⁺ (1 mM), the minus sign denotes the absence of modification during the exposure time. Channels were considered unmodified if there was no change in the fraction of time that the channels spent open. In low Ca²⁺ (1–2.5 μM), the + sign indicates that channels were modified, as detected by a sharp reduction in fractional open time during the time specified. The first two pairs of data represent experiments in the same channel, for which the channels were first exposed to NBA in high Ca²⁺ without modification and then to NBA in low Ca²⁺. Only in low Ca²⁺ did NBA modify the channels.

zydlowski & Latorre, 1983). Increasing Ca²⁺ concentration from 1 to 10 mM causes a shift in opening distribution curve, indicating that the duration of

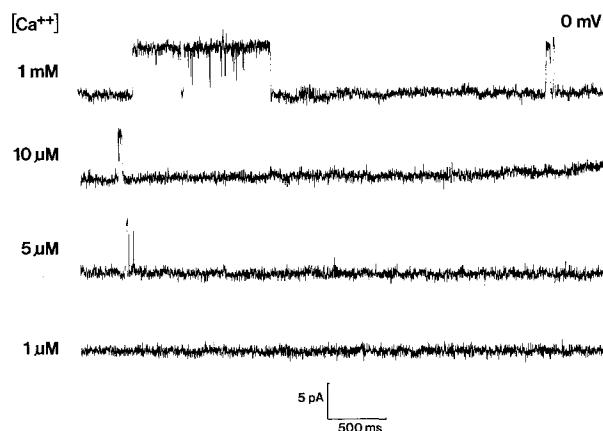
Table 3. Mean open times (msec)

Condition	T_o^1	T_o^2	Fraction T_o^1	Fraction T_o^2
Treated				
1 mM Ca ²⁺	0.8	17.0	0.13	0.92
10 mM Ca ²⁺	10.0	40.0	0.29	0.62
Treated				
10 mM Ca ²⁺	1.1	9.5	0.34	0.51
25 mM Ca ²⁺	4.4	26.1	0.42	0.37

Channel distributions were determined at 1 mM Ca²⁺, and 0 mV. 803 events were analyzed. The first treated channel distributions were measured at 0 mV, with 234 events analyzed at 1 mM Ca²⁺, and 522 events analyzed at 10 mM Ca²⁺. The second treated channel was assessed at +30 mV with 534 events analyzed at 10 mM Ca²⁺ and 675 events analyzed at 25 mM Ca²⁺. Single-channel experiments from three different patches. Mean open time, T_o , was determined by SAAM curve fitting program (see Materials and Methods).

the events has increased. This is reflected in an increase of the mean open time, T_o , of both types of opening events with increasing Ca²⁺ concentrations (Table 3). This demonstrates that not only are two distributions of opening events present following NBA but also that both are Ca²⁺ dependent.

Pallotta (1985) showed Ca²⁺-activated K⁺ channels in muscle modified by NBA when exposed to low Ca²⁺ display a population of short open events whose mean open time was Ca²⁺ independent. Although we cannot eliminate the possibility that Ca²⁺-independent open events are present in Ca²⁺-activated K⁺ channels in MTAL cells since these events may be shorter than we can resolve,² we do show that in high Ca²⁺ the open events are distinctly Ca²⁺-dependent. Thus, the primary effect of NBA is to reduce but not remove the Ca²⁺-sensitivity of the channel gating mechanism.


Low ACTIVITY Ca²⁺-ACTIVATED K⁺ CHANNELS

We observed in 16 of 80 seals, K⁺ channels (Fig. 5) with similar single-channel conductance (140 ± 4 pS, $n = 3$ in 7–10 μ M Ca²⁺) as the normal channels but which opened infrequently in the presence of μ M concentrations of Ca²⁺. Table 4 compares the open probability of the normal channel and the lower activity channel. Whereas the normal channel is almost always open in 10 μ M or in 1 mM Ca²⁺, the low activity channel opens much less frequently. Table 4 also gives the mean open times for two open distributions. Similar to the NBA-treated channel,

Table 4. Comparison of normal and low activity channels

	Ca ²⁺	T_o^1	T_o^2	Fraction T_o^1	Fraction T_o^2	P_o
Normal	10 μ M	6.8	58	0.05	0.95	0.93
	1 mM	6.7	67	0.05	0.89	0.86
Low activity	10 μ M	0.4	13	0.17	0.31	0.01
	1 mM	1.1	32	0.40	0.57	0.08

Probabilities were analyzed from 57–62 sec of data. The open times T_o^1 , T_o^2 for the low activity channel were analyzed from 264 events at 10 μ M Ca²⁺ and 404 events at 1 mM Ca²⁺.

Fig. 5. Ca²⁺ activation of a low activity channel

the mean open times displayed by the low activity channel are shorter than those of the normal channel when compared at the same Ca²⁺ concentrations. The low activity channel is Ca²⁺ dependent since both P_o , T_o^1 and T_o^2 , increase with increasing Ca²⁺. Similar to the normal channel, the open probability of the low activity channel is voltage dependent (see Fig. 3). These data demonstrate that MTAL cells possess a population of channels which resemble NBA-treated channels in that the sensitivity to Ca²⁺ is shifted to higher Ca²⁺.

Discussion

Ca²⁺ ACTIVATION OF NORMAL AND NBA-TREATED CHANNELS

The biophysical characteristics of the gating processes involved in opening and closing Ca²⁺-activated K⁺ channels were examined in detail by Moczydowski and Latorre (1983). They proposed a

² See footnote 1, p. 000.

model for channel activation that includes the sequential binding of two Ca²⁺ ions to a binding site on the intracellular face of the channel. The multiple open and closed states were attributed to the binding of either zero, one, or two Ca²⁺ ions to the channel in reversible equilibrium. Similarly, Magleby and Pallotta (1983) also proposed that channel opening depended on the binding of two or more Ca²⁺ ions to the Ca²⁺ binding site of the channel. The important feature of the scheme proposed by Moczydowski and Latorre (1983) is a voltage-dependent binding of the two Ca²⁺ ions. Moczydowski and Latorre (1983) viewed the channel as ligand gated, with voltage affecting binding of Ca²⁺ to the channel. The observations critical to the model were obtained from an analysis of medium duration opening and closing events, referred to as the "main gating mode" of the channel. Not considered in the model were the short duration or "flicker events" so typical of this channel or long Ca²⁺ blocking events.

Besides its role in channel activation, Ca²⁺ can also block Ca²⁺-activated K⁺ channels. The relationship is such that low Ca²⁺ concentrations will activate untreated Ca²⁺-activated K⁺ channels (see Fig. 1) but high Ca²⁺ will, in addition, tend to block the channels. Ca²⁺ blocks Ca²⁺-activated K⁺ channels in MTAL cells in two modalities, fast and slow block. The fast block, similar to TEA block (Guggino et al., 1987b), is evident by such fast closures that the mean closed time is under our resolution limit (0.5 msec). We can detect Ca²⁺ fast block, similar to that observed for Na⁺ block (see Yellen, 1984), as an apparent decrease in single-channel conductance of an unmodified channel from 150 pS in 10 μ M to 88 pS in 25 mM Ca²⁺. The slow block similar to that reported by Vergara and Latorre, (1983) and Vergara, Moczydowski and Latorre (1984) appears in MTAL cells as a long residence in a nonconductive state with a mean of 7.2 sec at 1 mM Ca²⁺, 0 mV. As reported by Vergara and Latorre (1983), the number of block events increases with Ca²⁺, but the mean block time is not dependent on Ca²⁺ concentration. The combined effect of Ca²⁺ activation and block is that increasing Ca²⁺ concentrations from μ M to mM concentrations first increase P_o to a peak value followed by a decline at higher Ca²⁺ concentrations. For example, in unmodified channels at 10 μ M Ca²⁺, $P_o = 0.93$, whereas at 1 mM, $P_o = 0.86$ (see Table 4).

In the present study, we show that NBA treatment in low Ca²⁺ dramatically reduces the fraction of time that channels spend in the open state by decreasing the mean open times of both populations of long and short opening events. However, the mean open time of both the short and long duration

events remain Ca²⁺ sensitive in modified channels. The major difference between modified and unmodified channels is that at the same Ca²⁺ concentration the mean open times of the NBA-modified channels are shorter than those of the normal channels. Likewise, the modified channel retains its normal voltage sensitivity as shown by voltage-dependent increases in P_o (see Fig. 3). NBA also does not affect the single-channel conductance. Thus, the modification of the channel produces an effect that is quite specific in reducing only the Ca²⁺ sensitivity.

SITE OF ACTION OF NBA

An important aspect of these studies is that within the time frame of our experiments NBA modification is protected by exposing the intracellular face of the cell membrane to 1 mM Ca²⁺, whereas NBA is effective in modifying the channels at 2.5 μ M. This lack of modification in high Ca²⁺ raises two hypotheses: (i) NBA modifies amino acids directly involved in Ca²⁺ binding and activation, thus modification cannot take place if the Ca²⁺ binding site is occupied, and (ii) NBA attacks a modifier site on the molecule that can adjust the Ca²⁺ activation of the channel; in high Ca²⁺ when the channel is in an open conformation the modifier site is unavailable for modification. Taken together with the observations that modification is irreversible and that once modified the channel becomes refractory to further modification, it is clear that NBA attacks amino acids directly involved in modulating channel activation by Ca²⁺.

LOW ACTIVITY CHANNELS

We have observed that most of the K⁺ channels in the apical membrane of cultured MTAL cells are highly Ca²⁺-activated with a P_o equal to about 0.5 at 5 μ M Ca²⁺ in Mg²⁺-free solutions. However, about 20% of the population appears to require much higher Ca²⁺ concentrations to attain activation. These low activity channels attain a P_o of 0.08 when exposed to 1 mM Ca²⁺ on the intracellular face of the membrane.

Although at the present time we do not know the functional significance of the low activity channels, several possibilities exist. First, it is possible that high and low activity K⁺ channels are not related. However, this is unlikely because they both have the same single-channel conductance, display similar multi-state kinetics, are voltage activated, and are inhibited by high doses of TEA on the intracellular side (the latter is the criterion used to ascertain the sidedness of the patch—see Materials and

Methods). Thus, it is likely that they are the same molecule in two different functional modes. A second possibility is that the low activity channel of MTAL cells may be present at a stage in the differentiation of these cells. For example, it has been demonstrated that cultured embryonic neurons of the frog, *Xenopus*, have 155 pS K⁺ channels which are Ca²⁺-activated in mature neurons, but appear to lack Ca²⁺-activation within one day after initiation of the cultures (Blair & Dionne, 1985). It appears that channels attain Ca²⁺ sensitivity as a consequence of cell differentiation in culture. These non-Ca²⁺-activated channels in *Xenopus* were tested for Ca²⁺-sensitivity only to 100 μ M Ca²⁺. It is not known whether increasing the Ca²⁺ to millimolar concentrations would reveal a lowered Ca²⁺-sensitivity similar to the low activity channel in MTAL cells. An example of modulation of K⁺ channel activity has also been observed in thrombocytes of the *Newt* (Kawa, 1987). In resting thrombocytes K⁺ currents are transient following membrane depolarization suggestive of an inactivation process, whereas during activation of the thrombocytes, the K⁺ channels are no longer capable of inactivation. Internal perfusion with NBA also removes inactivation, mimicking a normal cell process. The hypothesis is that one of the normal steps in thrombocyte activation is the modification of a portion of the K⁺ channel responsible for inactivation. A similar developmental change may be occurring in MTAL cells in culture. Finally, the low activity channel may represent a nonfunctional state in the life cycle of Ca²⁺-activated K⁺ channels. It is interesting that the low activity channel displays similar Ca²⁺-sensitivity as the NBA-treated channel. Perhaps there is a site on the channel molecule that can be modified by the cell to decrease the Ca²⁺ sensitivity to a range of Ca²⁺ concentrations well above normal physiological levels similar to the effect of NBA. Such a maneuver would make it extremely unlikely that the modified channel would transport K⁺ out of the cell, thereby effectively removing it from the pool of functioning channels. If the cell were able to convert the channel back to a highly Ca²⁺-sensitive form, or alternately to increase the Ca²⁺ sensitivity of individual channels, it would be able to modulate the number of functioning channels in the membrane without having to change intracellular Ca²⁺ concentrations.

The authors wish to thank Dr. Gary Yellen for his critical reading of the manuscript. We also acknowledge the technical assistance of Patricia Cea and Diane Markakis and the help Dr. Robert Phair provided in introducing us to SAAM programs. This work was supported in part by the National Institutes of Health Grant

#DK-32753 and by a Grant-In-Aid from the American Heart Association with funds contributed in part by the American Heart Association, Maryland Affiliate.

References

Barrett, J.N., Magleby, K.L., Pallotta, B.S. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle. *J. Physiol. (London)* **331**:211-230

Berman, M., Shahn, E., Weiss, M.F. 1962. The routine fitting of kinetic data to models: A mathematical formalism for digital computers. *Biophys. J.* **2**:275-287

Berman, M., Weiss, M.F. 1978. SAAM Manual. U.S. DHEW Publication No. (NIH) 78-180

Blair, L.A.C., Dionne, V.E. 1985. Developmental acquisition of Ca²⁺ sensitivity by K⁺ channels in spinal neurons. *Nature (London)* **315**:329-331

Green, N., Algren, A., Hoyer, J., Triche, T., Burg, M. 1985. Differentiated lines of cells from rabbit renal medullary thick ascending limbs grown on amnion. *Am. J. Physiol.* **249**:C97-C104

Guggino, S.E., Guggino, W.B., Green, N., Sacktor, B. 1987a. Ca²⁺-activated K⁺ channels in cultured medullary thick ascending limb cells. *Am. J. Physiol.* **252**:C121-C127

Guggino, S.E., Guggino, W.B., Green, N., Sacktor, B. 1987b. Blocking agents of Ca²⁺-activated K⁺ channels in cultured medullary thick ascending limb cells. *Am. J. Physiol.* **252**:C128-C137

Guggino, S.E., Suarez-Isla, B.A., Guggino, W.B., Sacktor, B. 1985. Forskolin and ADH stimulate a Ca²⁺-activated K⁺ channel in cultured kidney cells. *Am. J. Physiol.* **249**:F448-F455

Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. *Pfluegers Arch.* **391**:85-100

Hunter, M., Lopes, A.G., Boulpaep, E.L., Giebisch, G.H. 1984. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. *Proc. Natl. Acad. Sci. USA* **81**:4237-4239

Kawa, K. 1987. Transient outward currents and changes of their gating properties after cell activation in thrombocytes of the newt. *J. Physiol. (London)* **385**:189-205

Kawahara, K., Hunter, M., Giebisch, G. 1987. Intracellular Na⁺ blocks outward current through calcium-activated potassium channels in the luminal membrane of *Amphiuma* diluting segment. *Am. J. Physiol. (in press)*

Magleby, K.L., Pallotta, B.S. 1983. Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. *J. Physiol. (London)* **344**:585-604

Moczydłowski, E., Latorre, R. 1983. Gating kinetics of Ca²⁺-activated K⁺ channels from rat muscle incorporated into planar lipid bilayers: Evidence for two voltage dependent Ca²⁺ binding sites. *J. Gen. Physiol.* **82**:511-542

Pallotta, B.S. 1985. N-bromoacetamide removed a calcium-dependent component of channel opening from calcium-activated potassium channels in rat skeletal muscle. *J. Gen. Physiol.* **86**:601-611

Patlak, J., Horn, J. 1982. Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. *J. Gen. Physiol.* **79**:333-351

Vergara, C., Latorre, R. 1983. Kinetics of Ca²⁺-activated K⁺ channels from rabbit muscle incorporated into planar bilayers. *J. Gen. Physiol.* **82**:543-568

Vergara, C., Moczydowski, E., Latorre, R. 1984. Conduction, blockade, and gating in a Ca²⁺-activated K⁺ channel incorporated into planar lipid bilayers. *Biophys. J.* **45**:73-76

Yellen, G. 1984. Ionic permeation and blockade of Ca²⁺-activated K⁺ channels of bovine chromaffin cells. *J. Gen. Physiol.* **84**:157-186

Received 10 June 1987